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This paper presents the optimality conditions for optimum locations of internal
ring supports in circular plates for maximum frequency of axisymmetric vibration
of a specified order. The optimality conditions require both the reaction forces and
moments at the internal supports to vanish for optimal solutions. This means that
the internal ring supports should be placed at the nodal rings of the appropriate
higher-order vibration mode of a corresponding unsupported circular plate for
maximum effectiveness in raising the vibration frequency of the plate. Some design
examples are given to verify the derived optimality conditions.
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1. INTRODUCTION

The positions and shape of the structural supports/restraints are usually specified
by the architects or designers at the outset. The engineers then proceed to design
the structure or machine to achieve the prescribed performance criteria. The
design variables may consist of structural dimensions, shape parameters,
topological parameters and material properties such as fibre orientations in
laminated plates. As it is desirable to obtain an economical design, these variables
are somewhat optimized, by the engineers, subject to appropriate constraints.
One way of getting even better designs is to make a paradigm shift from fixing
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the supports/restraints at the outset to allowing engineers the freedom of designing
more optimal supports/restraints, i.e. with respect to their locations, stiffnesses and
shape.

In this study, we consider the optimal design of internal ring supports in circular
plates for maximum specified order of frequency of axisymmetric vibration.
Interestingly, the optimal locations of a given number of rigid internal supports
which maximizes the fundamental frequency of transverse virbation of a string or
a beam, or the elastic buckling load of an axially compressed column, are in fact
found to be at the nodal points of an appropriate higher-order vibration or
buckling mode of the original structural element. The proofs for this fact may be
obtained from papers by Courant and Hilbert [1], Olhoff [2], Rozvany and
Mroz [3], Olhoff and Taylor [4].

Even more remarkable is that the optimal design of a tapered beam with respect
to its nth eigenfrequency vn is coincidently the optimal design with respect to the
fundamental frequency v1 of a multiply supported beam, where the positions of
(n−1) simple supports between the beam end points (assumed to be additional
design variables) as found to be at the nodes of the former design. This theorem
has been proven by Olhoff [2]. The optimization of bracing and internal support
locations for beams against lateral buckling was also investigated by Wang
et al. [5].

Studies on the use of flexible supports have also been carried out by Szelag and
Mroz [6, 7], Mroz and Lekszycki [8], Garstecki and Mroz [9], Akesson and Olhoff
[10] and Olhoff and Akesson [11]. It was discovered that so long as the stiffnesses
of the flexible supports take on sufficiently finite (or critical stiffness) values that
will ensure a zero or near zero displacement at their locations, the nodal positions
of an unsupported structural element will still give the optimal loations for such
flexible supports. Obviously, when the stiffnesses fall below these critical values,
then the optimal locations of the flexible supports do not coincide with the nodal
positions. Moreover, the fundamental frequency of the internally supported
structural element will decrease from its maximum value.

This paper extends the optimality conditions for optimal support locations for
beams and columns to cover circular plates undergoing axisymmetric vibration.
By adopting a more refined plate theory of Mindlin [12], the effects of transverse
shear deformation and rotary inertia (which are significant in thick plates) on the
optimal locations can also be examined. For verification and exemplification of
the optimality conditions derived herein, some application oriented examples are
solved. In these examples, the thickness distribution of the tapered circular plates
is assumed to take the linearly segmented form.

2. PROBLEM DEFINITION

Consider an axisymmetric vibrating, circular plate with a thickness distribution
h(r), volume V, radius R, modulus of elasticity E, Poisson’s ratio n and shear
modulus G=E/[2(1+ n)]. The plate is either simply supported or clamped at its
periphery r=R and further supported by a number M of internal ring supports
at locations r= e1, e2, . . . , eM . The optimization problem is to determine the
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optimal locations ei of the ring supports so as to maximize the plate axisymmetric
vibration frequency of a specified order.

3. GOVERNING EQUATIONS AND OPTIMALITY CONDITIONS FOR
SUPPORT LOCATIONS

Based on the Mindlin plate theory for harmonic, axisymmetric vibration, the
Rayleigh quotient for the plate circular frequency v is given by [12, 13]

v2 =Min
w,c 0UT1, (w, c)$Sa , (1)

where w is the transverse displacement, c the rotation of the normal of the
cross-section, Sa is the set of kinematically admissible displacement fields which
consists of all displacements satisfying the necessary continuity conditions and
kinematic boundary conditions and

U= p g
R

0 6D$0dc

dr1
2

+0cr1
2

+2n
c

r
dc

dr%+ k2Gh0c+
dw
dr1

2

7r dr, (2a)

T= p g
R

0

mh6w2 +
h2c2

12 7r dr, (2b)

where r is the radial co-ordinate measured from the plate center, D(r)=Eh3(r)/
[12(1− n2)] is the flexural rigidity of the plate, m the mass density of the plate, k2

the Mindlin shear correction factor which will be assumed to be 5/6 for the present
study.

The minimization of the Rayleigh quotient with respect to the displacement
fields w, c yields the governing differential equations and the boundary conditions.
By taking the stationarity condition of v2 with respect to the deflection w, one
obtains

dwv
2 =0c

d
dr

[rQr ]+v2mhrw=0, (3)

and the boundary conditions given by

Qr =0 at r=0, w=0 at r=R, (4a, b)

with the transverse shear force Qr given by

Qr = k2Gh0c+
dw
dr1. (5)
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The stationarity condition of v2 with respect to c gives

dcv
2 =0

c−
d
dr

(rMr )+Mu + rQr −v2m
h3

12
cr=0, (6)

where the radial bending moment Mr and the circumferential bending moment Mu

are given by

Mr =D0dc

dr
+

n

r
c1, Mu =D0n dc

dr
+

1
r

c1, (7, 8)

and the corresponding boundary conditions at r=0 and r=R are given by

c=0 at r=0, (9a)

Mr =0 at r=R for a simply supported plate, (9b)

c=0 at r=R for a clamped plate. (9c)

Before proceeding further, the continuity conditions of various quantities
should be noted. The displacement w and the rotation c must be continuous but
their derivatives dw/dr and dc/dr need not be continuous over the support. Owing
to the equilibrium condition, the radial bending moment Mr and transverse shear
force Qr are continuous between any two neighbouring supports. At the support
position, the shear force and the radial moment distributions may be
discontinuous. The jumps in the shear force value and the radial moment value
are equal to the reaction force Pwi and the reaction moment Pci provided by the
support, respectively.

Using the transversality condition for internal subdomain boundaries (e.g.,
reference [14]), the optimality condition for the locations of the internal ring
supports is given by

(F−w'Fw' −c'Fc')=e−
i
=(F−w'Fw' −c'Fc')=e+

i
, i=1, 2, . . . , M, (10)

where f F dr=U−v2T, (W)'=d(W)/dr, F(W) =dF/d(W) and e+
i , e−

i are the right
and left sides, respectively of the point r= ei . In view of the continuity condition
of w and c across the internal support, equation (10) may be written as

6−Dr0dc

dr1
2

− k2Ghr0dw
dr1

2

7be−
i

=6−Dr0dc

dr1
2

− k2Ghr0dw
dr1

2

7be+
i

,

i=1, 2, . . . , M. (11)

For unspecified c at the internal support, one has the transversality condition:

(Fc')=e−
i
−(Fc')=e+

i
=0, i=1, 2, . . . , M. (12)
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As c is continuous over the internal support, equation (12) yields the optimality
condition

0dc

dr1be−
i

=0dc

dr1be+
i

, i=1, 2, . . . , M, (13)

and when substituted into equation (11), one can also conclude that

0dw
dr1be−

i

=0dw
dr1be+

i

, i=1, 2, . . . , M. (14)

Thus, the continuity of w, c, dw/dr, dc/dr at the optimal support location
implies that

(Qr )=e+
i
−(Qr )=e−

i
=Pwi =ei =0, i=1, 2, . . . , M, (15)

Mr =e+
i
−Mr =e−

i
=Pci =ei =0, i=1, 2, . . . , M. (16)

In summary, the conditions given by equations (15) and (16) for the optimal
location of an internal ring support require that both the reaction force and the
reaction moment should vanish at the support. This means that the optimal
locations of M internal ring supports may be determined by seeking the M nodal
rings (circular contours with w=0) of the (M+1) axisymmetric vibration mode
of an internally unsupported plate.

4. DESIGN EXAMPLES

4.1.  (1):      

For the first example, simply supported and clamped circular plates of two
different thickness values ho /R=0·001 and 0·3 were analysed using the
Rayleigh–Ritz method (see paper by Chou and Wang [13]). The first thickness
value depicts a very thin plate and this would be equivalent to adopting the
classical thin plate theory where the effect of transverse shear deformation is
neglected. Thus, the comparison of the two plate results would reveal the effect
of the transverse shear deformation. In all calculations, the Poisson ratio n=0·3
and the shear correction factor k2 =5/6 were adopted.

Table 1 compares the maximum fundamental frequency parameters
l1 =v2

1mhoR4/Do of plates with M optimally located, internal supports to the
(M+1) natural frequency parameters l� m+1 = v̆2

M+1mhoR4/Do of plates without
internal support. An exact matching of the frequency values was observed and also
the optimal support locations ei were found at the nodal locations ěi of the
corresponding plates without internal support. The numerical results thus verify
the foregoing optimality conditions for support locations, i.e., the supports should
be placed at the nodal ring positions of the appropriate higher vibration mode.

For clamped plates, it can be observed from the vibration mode shapes in
Figure 1(a) and the results in Table 1 that the effects of transverse shear
deformation and rotary inertia tend to shift the ring supports (or nodal positions)
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T 1

Comparison between fundamental frequency parameters and optimal support
locations of plates with internal ring supports and the appropriate natural frequency
parameters and nodal ring positions of corresponding plates without any internal ring

support

Simply supported edge Clamped edge
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV
Plate with M Plate without Plate with M Plate without

ho /R M internal support internal support internal support internal support

0·001 1 l1 =883·3 l
 2 =883·3 l1 =1582 l
 2 =1852
e1/R=0·442 ě1/R=0·442 e1/R=0·379 ě1/R=0·379

0·3 1 l1 =468·5 l
 2 =468·5 l1 =611·2 l
 2 =611·2
e1/R=0·442 ě1/R=0·442 e1/R=0·396 ě1/R=0·396

l1 =5490 l
 3 =5490 l1 =7939 l
 3 =7939
0·001 2 e1/R=0·279 ě1/R=0·279 e1/R=0·255 ě1/R=0·255

e2/R=0·641 ě2/R=0·641 e2/R=0·583 ě2/R=0·583

l1 =1768 l
 3 =1768 l1 =1914 l
 3 =1914
0·3 2 e1/R=0·279 ě1/R=0·279 e1/R=0·272 ě1/R=0·272

e2/R=0·641 ě2/R=0·641 e2/R=0·616 ě2/R=0·616

Figure 1. First three vibration mode shapes of uniform thickness plates without internal ring
supports for (a) clamped edges and (b) simply supported edges. ––, h/R=0·001; - - - , h/R=0.30.
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slightly towards the clamped edge. Interestingly, these effects have negligible
influence in the case of simply supported plates with uniform thickness, as shown
by the vibration mode shapes in Figure 1(b). This means that the optimal locations
of internal ring supports in circular, thick plates with simply supported edges are
found at the nodal rings of a correspondingly thin, simply supported, circular
plates. The nodal radii ě for the axisymmetric vibration of thin plates may be
determined from the following equation [15]

I0(kě)J0(kR)− I0(kR)J0(kě)=0, (17)

where J0 and I0 are the zeroth order Bessel functions of the first kind and modified
first kind, respectively, and the frequency parameter k4 = v̄2rh/D for the thin,
simply supported circular plate is to be computed from the frequency equation

J1(kR)
J0(kR)

+
I1(kR)
I0(kR)

=
2kR
1− n

. (18)

Interestingly, Wang [16] has shown that the Mindlin plate vibration frequencies
v may be deduced quite accurately from the corresponding classical thin plates
vibration frequencies v̄ using the following frequencies relationship:

v2 =
6k2G
mh2 6$1+

1
12

v̄h2Xmh
D 01+

2
k2(1− n)1%

−X$1+
1
12

v̄h2Xmh
D 01+

2
k2(1− n)1%

2

−
mh2

3k2G
v̄27. (19)

Note that the same relationship has been proven to be exact for the case of general
polygonal plates with simply supported edges [17].

4.2.  (2):       

For this next illustrative design example, simply supported and clamped,
continuous linearly segmented plates with N equal length (radial) segments are
considered. As before, to examine the effects of transverse shear deformation and
rotary inertia, two thickness parameters ho /R=0·001 and 0·3 are considered,
where ho is equal to the thickness of a reference, uniform thickness plate having
the same volume as the segmented plate. Here we optimize the plate thickness
parameters t= h/ho at the segment boundaries as well as the locations of the
internal ring supports for maximum fundamental frequency parameter
l1 =v2

1mhoR4/Do . The details of the optimization method may be obtained from
the paper by Chou and Wang [13]. The optimal solutions are tabulated in Tables 2
and 3 for one and two ring support cases and one to two segments. Next, the
segmented plate without any ring supports was optimized for maximum second
frequency parameter l
 2 = v̌2

2mhoR4/Do and also for maximum third frequency
parameter l
 3 = v̌2

3mhoR4/Do of vibration and the results are shown in Tables 2 and
3. It may be observed from the tables that the nodal ring positions are almost
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T 2

Comparison between the optimal solutions of (N=1) segmented plates with internal
ring supports and the corresponding plates without any ring support

Simply supported edge Clamped edge
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV
Plate with M Plate without Plate with M Plate without

ho /R M internal support internal support internal support internal support

l1 =1089 l� 2 =1089 l1 =1679 l� 2 =1679
0·001 1 e1/R=0·475 ě1/R=0·475 e1/R=0·410 ě1/R=0·411

t(0)=2·141 t(0)=2·140 t(0)=1·591 t(0)=1·591
t(1)=0·430 t(1)=0·430 t(1)=0·705 t(1)=0·705

l1 =509·4 l� 2 =509·4 l1 =619·8 l� 2 =619·8
0·3 1 e1/R=0·451 e1/R=0·451 e1/R=0·409 ě1/R=0·409

t(0)=1·979 t(0)=1·979 t(0)=1·445 t(0)=1·446
t(1)=0·511 t(1)=0·511 t(1)=0·777 t(1)=0·777

l1 =6855 l� 2 =6855 l3 =9153 l� 3 =9154
e1/R=0·328 ě1/R=0·327 e1/R=0·297 ě1/R=0·296

0·001 2 e2/R=0·701 ě2/R=0·700 e2/R=0·645 ě2/R=0·644
t(0)=2·092 t(0)=2·086 t(0)=1·843 t(0)=1·837
t(1)=0·454 t(1)=0·457 t(1)=0·576 t(1)=0·582

l1 =1856 l� 3 =1856 l1 =1994 l� 3 =1994
e1/R=0·293 ě1/R=0·293 e1/R=0·286 ě1/R=0·286

0·3 2 e2/R=0·660 ě2/R=0·660 e2/R=0·639 ě2/R=0·638
t(0)=1·822 t(0)=1·822 t(0)=1·784 t(0)=1·775
t(1)=0·589 t(1)=0·589 t(1)=0·608 t(1)=0·612

in total agreement with the optimal locations of the ring supports and the same
applies for the optimal thickness parameters.

Based on the foregoing simple and illustrative example, one may note that the
optimal locations of internal ringe supports are found at the nodal rings of the
corresponding internally unsupported plate and this optimality condition also
applies when the plate shape is to be optimized as well.

5. ELASTIC INTERNAL RING SUPPORTS

In the foregoing formulation, it has been assumed that the internal ring
supports are rigid and the transverse displacement w(ei )=0, i=1, . . . , M. In
this section, some remarks will be made on the internal supports being elastic with
transverse and rotational stiffnesses kwi and kri , respectively. By modelling the
supports as elastic springs, one can readily apply the formulation to optimal
design of circular plates mounted on an elastic cylinder or elastic rings, or
similar problems.
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For such elastic supports, the strain energy U given in equation (2a) has to be
augmented by the strain energy Us of the elastic springs that modelled the supports.
This strain energy of the springs is given by

Us = s
M

i=1

pei [kwiw2(ei )+ kric
2(ei )]. (20)

In view of the internal supports being elastic and the continuity of w and c over
the supports, the optimality conditions given by equations (11), (15) and (16) now
become

ei6−D$0dc

dr1
2

be+
i

−0dc

dr1
2

be−
i
%− k2Gh$0dw

dr1
2

be−
i

−0dw
dr1

2

be+
i
%7

= kwiw2(ei )+ kric
2(ei ), (21)

T 3

Comparison between the optimal solutions of (N=2) segmented plates with internal
ring supports and the corresponding plates without any ring support

Simply supported edge Clamped edge
ZXXXXXCXXXXXXV ZXXXXXXCXXXXXXV
Plate with M Plate without Plate with M Plate without

ho /R M internal support internal support internal support internal support

l1 =1236 l� 2 =1236 l1 =2609 l� 2 =2609
e1/R=0·490 ě1/R=0·489 e1/R=0·391 ě1/R=0·392

0·001 1 t(0)=3·670 t(0)=3·669 t(0)=3·737 t(0)=3·759
t(0·5)=0·925 t(0·5)=0·925 t(0·5)=0·208 t(0·5)=0·215

t(1)=0·556 t(1)=0·556 t(1)=1·403 t(1)=1·391

l1 =530·9 l� 2 =530·9 l1 =839·7 l� 2 =839·7
e1/R=0·451 ě1/R=0·451 e1/R=0·361 ě1/R=0·362

0·3 1 t(0)=3·430 t(0)=3·445 t(0)=3·644 t(0)=3·652
t(0·5)=1·011 t(0·5)=1·010 t(0·5)=0·106 t(0·5)=0·107

t(1)=0·501 t(1)=0·499 t(1)=1·544 t(1)=1·541

l1 =8449 l� 3 =8449 l1 =13223 l� 3 =13255
e1/R=0·345 ě1/R=0·345 e1/R=0·296 ě1/R=0·297

0·001 2 e2/R=0·722 ě2/R=0·722 e2/R=0·648 ě2/R=0·646
t(0)=4·961 t(0)=4·969 t(0)=4·423 t(0)=4·396

t(0·5)=0·275 t(0·5)=0·272 t(0·5)=0 t(0·5)=0
t(1)=1·078 t(1)=1·080 t(1)=1·516 t(1)=1·521

l1 =2387 l� 3 =2397 l1 =2527 l� 3 =2538
e1/R=0·259 ě1/R=0·259 e1/R=0·256 ě1/R=0·256

0·3 2 e2/R=0·717 ě2/R=0·716 e2/R=0·686 ě2/R=0·681
t(0)=5·337 t(0)=5·183 t(0)=6·512 t(0)=6·342

t(0·5)=0·000 t(0·5)=0·000 t(0·5)=0·000 t(0·5)=0·000
t(1)=1·333 t(1)=1·363 t(1)=1·098 t(1)=1·132
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Figure 2. Variations of frequency parameter with respect to transverse stiffness values of two
elastic ring supports for a simply supported circular plate with (a) h/R=0·001 and (b) h/R=0·3.

(Qr )=e+
i
−(Qr )=e−

i
=Pwi =ei or $0dw

dr1be+
i

−0dw
dr1be−

i
%=

kwi

k2Gh
w(ei ), (22)

Mr =e+
i
−Mr =e−

i
=Pci =ei or $0dc

dr1be+
i

−0dc

dr1be−
i
%=

kri

D
c(ei ), (23)

for i=1, 2, . . . , M. As expected, equations (22) and (23) show, respectively, that
the vertical reaction forces and rotational moments provided by the ith support
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are proportional to the transverse displacement and rotation angle. Equation (22)
also reveals that there is a ‘‘kink’’ in the transverse deflection function w at the
elastic support, where the change in slope is proportional to the transverse
displacement at that point.

The optimality conditions, given by equations (21) to (23), show that for the
case of elastic internal supports with finite stiffnesses, their optimal locations do
not match the nodal ring positions of the corresponding plate without internal
support. However, if the stiffnesses take on adequate magnitudes so as to cause
the transverse displacement and the rotation to be zero at the elastic support
locations, then the earlier optimality conditions become valid again. Figures 2(a)

Figure 3. Variations of critical transverse stiffness with respect to h/R for simply supported
circular plates in the case of (a) one ring support and (b) two ring supports.
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and (b) show the variations in the frequency parameters of simply supported,
uniform thickness plates with respect to the transverse stiffness values of the two
elastic ring supports placed at e1/R=0·279 and e2/R=0·641. Frequency crossings
can be observed from these figures. For low transverse stiffness values, the
fundamental frequency parameter is considerably lower than the frequency
parameter associated with the third vibration mode. Note that the latter frequency
is independent of the transverse stiffness value. As the stiffness value increases, the
difference between the first and second frequency values becomes smaller.
Eventually the two frequencies are equal when the transverse stiffness reaches a
particular value. For this stiffness value, there are two modes of vibration with
the same frequency parameter. After the frequency crossing, the former second
mode of vibration becomes the fundamental mode of vibration. At the critical
stiffness value kc

w , the fundamental frequency reaches the frequency value
associated with the third mode of vibration that in turn corresponds to the
fundamental vibration mode of the same plate with two rigid ring supports. As
the critical transverse stiffness kc

w for an internal elastic support (placed at the nodal
ring location) is important, plots of these stiffness values for which the
fundamental frequency is g% of the fundamental frequency of the plate with one
and two rigid supports are given in Figures 3(a) and (b), respectively. It can be
seen that the critical stiffness is affected by the inclusion of transverse shear
deformation and rotary inertia as the curves drop with respect to increasing
thickness-to-radius and then gradually rise after certain thickness-to-radius values.

6. CONCLUDING REMARKS

It is shown herein that the conditions for optimal locations of rigid, internal ring
supports in circular plates for maximum frequency of axisymmetric vibration of
a specified order are that the reaction forces and moments must vanish at these
locations. The vanishing of these reaction forces and moments imply that the ring
supports should be placed at the nodal rings of the appropriate vibration mode
of a corresponding plate without any internal ring supports. The optimality
condition for the supports is also valid when one considers the more general
optimization problem involving the locations of ring supports as well as the plate
shape. By knowing the optimality condition, one may bypass the need for
optimizing the more difficult plate problem with internal ring supports.
Optimization of an internally unsupported plate for the appropriate vibration
mode will suffice as the solution will give the optimal support locations from the
nodal positions, the optimal plate thickness distribution and the corresponding
optimal fundamental frequency value. The latter optimization problem is simpler
in the sense that the decision variables have reduced by the number of internal
support locations. The optimality conditions also hold in the case of flexible ring
supports provided that they have adequate elastic stiffness.
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